Methods for identifying subject-specific abnormalities in neuroimaging data
نویسندگان
چکیده
منابع مشابه
Methods for identifying subject-specific abnormalities in neuroimaging data.
Algorithms that are capable of capturing subject-specific abnormalities (SSA) in neuroimaging data have long been an area of focus for diverse neuropsychiatric conditions such as multiple sclerosis, schizophrenia, and traumatic brain injury. Several algorithms have been proposed that define SSA in patients (i.e., comparison group) relative to image intensity levels derived from healthy controls...
متن کاملBayesian multi-task learning for decoding multi-subject neuroimaging data
Decoding models based on pattern recognition (PR) are becoming increasingly important tools for neuroimaging data analysis. In contrast to alternative (mass-univariate) encoding approaches that use hierarchical models to capture inter-subject variability, inter-subject differences are not typically handled efficiently in PR. In this work, we propose to overcome this problem by recasting the dec...
متن کاملFunctional clustering: identifying strongly interactive brain regions in neuroimaging data.
Brain imaging data are generally used to determine which brain regions are most active in an experimental paradigm or in a group of subjects. Theoretical considerations suggest that it would also be of interest to know which set of brain regions are most interactive in a given task or group of subjects. A subset of regions that are much more strongly interactive among themselves than with the r...
متن کاملIdentifying Factors Affecting Household Energy Consumption Using Data Mining Methods
Due to increasing population and decreasing energy sources, this research studies the consumption of domestic energy. The purpose of this study is to predict the factors affecting household energy consumption. To do this, we use 3 algorithms, M5Rules, K-nearest neighbor and random forest, available in Weka software. In this study, the feature correlation algorithm is used to select the most imp...
متن کاملMethods for detecting functional classifications in neuroimaging data.
Data-driven statistical methods are useful for examining the spatial organization of human brain function. Cluster analysis is one approach that aims to identify spatial classifications of temporal brain activity profiles. Numerous clustering algorithms are available, and no one method is optimal for all areas of application because an algorithm's performance depends on specific characteristics...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Human Brain Mapping
سال: 2014
ISSN: 1065-9471
DOI: 10.1002/hbm.22563